更多>>人气最旺专家

张家睿

领域:新疆日报

介绍:……………………………………………………283.3.3学校公共浴室节水、节能研究……………………………………313.4游泳馆用水……………………………………………………………….323.4.1分析实验数据……………………………………………………….323.4.2游泳馆节水…………………………….:………………………….343.5教学楼用水…………………………….:…………………………………353.5.1教学楼调研方法……………………………………………………353.5.2教学楼人均用水定额、单位面积用水量…………………………35目录3.5.2教学楼节水措施……………………………………………………383.6校医院用水量调查分析………………………………………………….393.6.1校医院用水量监测结果……………………………………_……393.6.2校医院用水量情况小结……………………………………………4l3.7图书馆用水量调查分析…………………………………………………423.7.1图书馆用水人数统计………………………………………………423.7.2图书馆用水规律分析………………………………………………433.7.3...

刘洋

领域:人民经济网

介绍:PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际

k8。com
本站新公告尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际
2qi | 2019-03-23 | 阅读(224) | 评论(346)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际
h2j | 2019-03-23 | 阅读(973) | 评论(872)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
ogo | 2019-03-23 | 阅读(923) | 评论(212)
本文系版权作品,未经授权严禁转载。【阅读全文】
zr1 | 2019-03-23 | 阅读(541) | 评论(166)
不得交谈、走动或做其他动作。【阅读全文】
zhq | 2019-03-23 | 阅读(178) | 评论(852)
时间是1949年9月21日。【阅读全文】
oon | 2019-03-22 | 阅读(14) | 评论(952)
1926年初,任公患有尿血症,协和医师诊断为右肾有肿瘤,建议割除。【阅读全文】
0ve | 2019-03-22 | 阅读(574) | 评论(475)
林承焰‘31将研究剩余油的形成与分布研究分为取心技术等6个方面。【阅读全文】
mdk | 2019-03-22 | 阅读(854) | 评论(209)
讲到那政治革命的结果,是建立民主立宪政体。【阅读全文】
尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际,尊龙人生就是搏最新国际
1ss | 2019-03-22 | 阅读(204) | 评论(671)
望大家配合,以营造出一个优秀、和谐的班集体!第十一学习小组组长整改措施我的职位地理科代表我的职责1、了解全班同学对本学科的认识及学习情况,及时向班主任和科任教师汇报;2、组织好全班对本学科的学习经验的交流;3、组织开展评学评比教学活动,并向科任老师反映、汇报;4、组织各小组长搞好作业本的收法及记载的工作,并按时收发作业本,记载作业的完成情况。【阅读全文】
e1i | 2019-03-21 | 阅读(235) | 评论(949)
如果a=1㎝,b=3㎝,c=2㎝,d=6㎝,那么a、b、c、d是成比例线段吗?a、c、d、b呢?试一试回忆比例的基本性质比例式可以写成等积式ad=bc还可以写成多少种不同的比例式探究类似地与比例中项有关,如果a:b=b:c那么.2如果a:b=c:d或,那么。【阅读全文】
ey9 | 2019-03-21 | 阅读(790) | 评论(997)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
yox | 2019-03-21 | 阅读(99) | 评论(235)
均视为同一用户。【阅读全文】
eml | 2019-03-21 | 阅读(735) | 评论(972)
”有了压力才动力,所以合理利用休息时间,加快学习步伐是形势所趋。【阅读全文】
voa | 2019-03-20 | 阅读(482) | 评论(162)
7、下列是不同量筒的量程和分度值,小明同学要测量出密度是/cm的酒精100g,则应选择()A、50mL,5mLB、100mL,2mLC、250mL,5mLD、400mL,10mL3、为了测定某种小钢球的密度,先在一只空瓶中装满水,测得总质量是540g,然后将质量是的小钢球装入瓶内,溢出一部分水后,再测其总质量是625g,求这种小钢球的密度.*1.密度的公式?2.在实验室测量物体的质量的器材是什么?如何测量固体和液体的质量?3.在实验室测量物体的体积的器材是什么?如何测量固体和液体的体积?复习提问:第三节测量物质的密度密度的测量:ρ=m/v需要测量的量:①质量:m②体积V①质量:m天平(使用方法)规则:刻度尺不规则:量筒(量杯/使用方法)②体积V①质量:m天平②体积V:量筒认识量筒和量杯3.量筒上的标度单位:毫升mL(ml)1mL=1cm3最大测量值:常用100mL,200mL分度值(每小格刻度值):1mL,2mL,5mL一、量筒的使用1.量筒是测量液体体积的仪器;2.观察量筒,思考课本P117[想想做做]中的问题。【阅读全文】
whq | 2019-03-20 | 阅读(998) | 评论(322)
这标明①最高行政机关必须向全国人大负责②国家机关必须贯彻依法治国原则③全国人大具有执法和检查职能④人大常委会是人大最高权力机关A.①②B.①③C.②④D.③④人大代表的权利提案权:经调研就某问题写成草案向人大提出的权利审议权:审查、讨论,发表意见表决权:表示赞成或反对或弃权的决定权利质询权:对政府工作提出问题并要求答复权利在G市2006年召开的人民代表大会上,人大代表就G市该年的财政预算案提出了许多批评意见,财政局长几次到会就预算中的一些问题回答代表的提问。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-03-23

利来国际旗舰版 利来国际w66.com 利来国际老牌博彩手机 利来娱乐网 利来国际手机版
利来国际老牌 利来娱乐国际最给利老牌网站 利来娱乐国际最给利老牌网站是什么 利来国际游戏平台 利来国际是多少
利来国际w66手机版 利来国际最给利的老牌 利来电游 利来国际公司 利来国际老牌博彩
w66.cum 利来国际手机客户端 利来娱乐国际 利来国际 利来国际官网
嘉善县| 阜城县| 定结县| 中江县| 武城县| 永宁县| 嵊州市| 洞口县| 崇文区| 建阳市| 北流市| 石嘴山市| 屏边| 霍林郭勒市| 景洪市| 和田市| 寻乌县| 巢湖市| 乌恰县| 博罗县| 舞钢市| 巢湖市| 莱阳市| 乌拉特后旗| 东兴市| 长岭县| 日土县| 达日县| 广宗县| 蒙城县| 栾川县| 北流市| 天祝| 杨浦区| 大田县| 富宁县| 莱西市| 中阳县| 浏阳市| 五家渠市| 西乌珠穆沁旗| http://m.43030999.cn http://m.82486670.cn http://m.12038531.cn http://m.92140821.cn http://m.10066087.cn http://m.24972532.cn